\(\int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx\) [492]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 262 \[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=-\frac {b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {3 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

-1/4*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(
a+b*cos(d*x+c))^(1/2)/a/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+3/4*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)
+1/4*(4*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a
+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a/d/(a+b*cos(d*x+c))^(1/2)+1/4*b*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/
a/d+1/2*sec(d*x+c)*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {2875, 3134, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\frac {\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {b \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{4 a d}+\frac {3 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}-\frac {b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d} \]

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^3,x]

[Out]

-1/4*(b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (3*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*
x]]) + ((4*a^2 - b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(4*a*d*Sqr
t[a + b*Cos[c + d*x]]) + (b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*a*d) + (Sqrt[a + b*Cos[c + d*x]]*Sec[c +
 d*x]*Tan[c + d*x])/(2*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2875

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Dist[
1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*c*(m + 1) + b*d*
n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && In
tegersQ[2*m, 2*n]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \frac {\left (\frac {b}{2}+a \cos (c+d x)+\frac {1}{2} b \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int \frac {\left (\frac {1}{4} \left (4 a^2-b^2\right )+\frac {1}{2} a b \cos (c+d x)-\frac {1}{4} b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a} \\ & = \frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\int \frac {\left (-\frac {1}{4} b \left (4 a^2-b^2\right )-\frac {3}{4} a b^2 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a b}-\frac {b \int \sqrt {a+b \cos (c+d x)} \, dx}{8 a} \\ & = \frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} (3 b) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left (4 a^2-b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 a}-\frac {\left (b \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{8 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\left (3 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \cos (c+d x)}}+\frac {\left (\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 a \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {3 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 a d \sqrt {a+b \cos (c+d x)}}+\frac {b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac {\sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.68 (sec) , antiderivative size = 393, normalized size of antiderivative = 1.50 \[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\frac {\frac {8 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (8 a^2-3 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a \sqrt {a+b \cos (c+d x)}}-\frac {2 i \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a^2 \sqrt {-\frac {1}{a+b}}}+\frac {4 \sqrt {a+b \cos (c+d x)} (2 a+b \cos (c+d x)) \sec (c+d x) \tan (c+d x)}{a}}{16 d} \]

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^3,x]

[Out]

((8*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*
(8*a^2 - 3*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a*Sqrt[a + b*Co
s[c + d*x]]) - ((2*I)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d
*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(-2*
a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a
, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a^2*Sqrt[-(a + b)^(-1)]) + (4*
Sqrt[a + b*Cos[c + d*x]]*(2*a + b*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/a)/(16*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(976\) vs. \(2(323)=646\).

Time = 5.46 (sec) , antiderivative size = 977, normalized size of antiderivative = 3.73

method result size
default \(\text {Expression too large to display}\) \(977\)

[In]

int(sec(d*x+c)^3*(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b
^2+(12*a*b+8*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-4*a^2-6*a*b-2*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*
x+1/2*c)+4*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*b*EllipticF(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+b^2*EllipticE(cos(1
/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2+EllipticPi(cos(1/2
*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2)*sin(1/2*d*x+1/2*c)^4-4*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*b*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-b*EllipticE(cos(1/2*d
*x+1/2*c),(-2*b/(a-b))^(1/2))*a+b^2*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4*EllipticPi(cos(1/2*d*x+
1/2*c),2,(-2*b/(a-b))^(1/2))*a^2+EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2)*sin(1/2*d*x+1/2*c)^2
+3*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*
EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/
2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*
b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2+(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2
*b/(a-b))^(1/2))*b^2)/a/(2*cos(1/2*d*x+1/2*c)^2-1)^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)**3*(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*cos(c + d*x))*sec(c + d*x)**3, x)

Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^3, x)

Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \sec ^3(c+d x) \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^3,x)

[Out]

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^3, x)